Science Brief: Community Use of Masks to Control the Spread of SARS

Blog

HomeHome / Blog / Science Brief: Community Use of Masks to Control the Spread of SARS

Mar 08, 2024

Science Brief: Community Use of Masks to Control the Spread of SARS

COVID-19 Science Briefs provide a summary of the scientific evidence used to inform specific CDC guidance and recommendations. The Science Briefs reflect the scientific evidence, and CDC’s

COVID-19 Science Briefs provide a summary of the scientific evidence used to inform specific CDC guidance and recommendations. The Science Briefs reflect the scientific evidence, and CDC’s understanding of it, on a specific topic at the time of the Brief’s publication. Though CDC seeks to update Science Briefs when and as appropriate, given ongoing changes in scientific evidence an individual Science Brief might not reflect CDC’s current understanding of that topic. As scientific evidence and available information on COVID-19 change, Science Briefs will be systematically archived as historic reference materials.

Page First Published Nov 10, 2020 | View Page Updates

SARS-CoV-2 infection is transmitted predominantly by inhalation of respiratory droplets generated when people cough, sneeze, sing, talk, or breathe. CDC recommends community use of masks to prevent transmission of SARS-CoV-2. Masks are primarily intended to reduce the emission of virus-laden droplets by the wearer (“source control”), which is especially relevant for asymptomatic or presymptomatic infected wearers who feel well and may be unaware of their infectiousness to others (estimated to account for more than 50% of SARS-CoV-2 transmissions).1, 2 Masks also help reduce inhalation of these droplets by the wearer (“filtration for wearer protection”). The community benefit of masking for SARS-CoV-2 control is due to the combination of these two effects (source control and filtration for wearer protection); individual prevention benefit increases with increasing numbers of people using masks consistently and correctly.

Multi-layer cloth masks block release of exhaled respiratory particles into the environment,3-6 along with any microorganisms associated with these particles.7, 8 Cloth masks not only effectively block most large droplets (i.e., 20-30 microns and larger),9 but they can also block the exhalation of fine droplets and particles (also often referred to as aerosols) smaller than 10 microns3, 5 which increase in number with the volume of speech10-12 and specific types of phonation.13 Multi-layer cloth masks can both block 50-70% of these fine droplets and particles3, 14 and limit the forward spread of those that are not captured.5, 6, 15, 16 Upwards of 80% blockage has been achieved in human experiments,4 with cloth masks in some studies performing on par with surgical masks as barriers for source control.3, 9, 14, 17 In one study, conducted prior to widespread circulation of the Delta variant, masks worked equally well for blocking aerosolized particles containing both “wild-type” virus and the Alpha variant (a more infectious variant).17

Studies demonstrate that cloth mask materials can also reduce wearers’ exposure to infectious droplets through filtration, including filtration of fine droplets and particles less than 10 microns. The relative filtration effectiveness of various masks has varied widely across studies, in large part due to variation in experimental design and particle sizes analyzed. Multiple layers of cloth with higher thread counts have demonstrated superior performance compared to single layers of cloth with lower thread counts, in some cases filtering nearly 50% of fine particles less than 1 micron.14, 18-30 Some materials (e.g., polypropylene) may enhance filtering effectiveness by generating triboelectric charge (a form of static electricity) that enhances capture of charged particles20 while others (e.g., silk) may help repel moist droplets31 and reduce fabric wetting and thus maintain breathability and comfort. In addition to the number of layers and choice of materials, other techniques can improve wearer protection by improving fit and thereby filtration capacity. Examples include but are not limited to mask fitters, knotting-and-tucking the ear loops of medical procedures masks, using a cloth mask placed over a medical procedure mask, and nylon hosiery sleeves.32-36

At least ten studies have confirmed the benefit of universal masking in community level analyses: in a unified hospital system,47 a German city,48 two U.S. states,49, 50 a panel of 15 U.S. states and Washington, D.C.,51, 52 as well as both Canada53 and the U.S.54-56 nationally. Each analysis demonstrated that, following directives from organizational and political leadership for universal masking, new infections fell significantly. Two of these studies51, 52 and an additional analysis of data from 200 countries that included the U.S.56 also demonstrated reductions in mortality. Another 10-site study showed reductions in hospitalization growth rates following mask mandate implementation.54 A separate series of cross-sectional surveys in the U.S. suggested that a 10% increase in self-reported mask wearing tripled the likelihood of stopping community transmission.57 An economic analysis using U.S. data found that, given these effects, increasing universal masking by 15% could prevent the need for lockdowns and reduce associated losses of up to $1 trillion or about 5% of gross domestic product.52

Two studies have been improperly characterized by some sources as showing that surgical or cloth masks offer no benefit.58,59 A community-based randomized control trial in Denmark during 2020 assessed whether the use of surgical masks reduced the SARS-CoV-2 infection rate among wearers (personal protection) by more than 50%.58 Findings were inconclusive,58 most likely because the actual reduction in infections was lower. The study was too small (i.e., enrolled about 0.1% of the population) to assess whether masks could decrease transmission from wearers to others (source control). A second study of 14 hospitals in Vietnam during 2015 found that cloth masks were inferior to surgical masks for protection against clinical upper respiratory illness or laboratory-confirmed viral infection.59 The study had a number of limitations including the lack of a true control (no mask) group for comparison, limited source control as hospitalized patients and staff were not masked, unblinded study arm assignments potentially biasing self-reporting of illness, and the washing and re-use of cloth masks by users introducing the risk of infection from self-washing. A follow up study in 2020 found that healthcare workers whose cloth masks were laundered by the hospital were protected equally as well as those that wore medical masks.60

Adults

Research supports that under most circumstances, mask wearing has no significant adverse health effects for wearers. Studies of healthy hospital workers, older adults, and adults with chronic obstructive pulmonary disease (COPD) reported no to minimal changes in oxygen or carbon dioxide levels while wearing a cloth or surgical mask either during rest or moderate physical activity.61-65 The safety of mask use during low to moderate levels of exercise has been confirmed in studies of healthy adults and adolescents.64, 66-70 Some,71-74 but not all,67 studies have found that during intense exercise, especially when approaching the aerobic threshold, wearing a mask can increase dyspnea (difficulty breathing), perceived exertion, and claustrophobia, and produce modest negative effects on measured cardiopulmonary parameters. In some people, face masks worn for longer durations might be associated with skin reactions such as acne, itching, dry skin and worsening of existing dermatoses.75-77 Wearing a surgical mask and N95 respirator may have a higher risk of skin reactions compared with a cloth mask.76-78

Children

A study of 60 elementary school children reported no adverse cardiovascular (e.g., heart rate) or pulmonary (e.g., peripheral oxygen saturation) effects among children while wearing a cloth face covering in a classroom for 30 consecutive minutes of instructional time.79 A separate study observed no oxygen desaturation or respiratory distress after 60 minutes of monitoring among children less than 2 years of age when masked during normal play.80 A randomized trial among 40 children aged 3–10 years old scheduled for elective surgery, found that protective surgical face masks could be used safely in the postoperative period.81 In a prospective school-based cohort study of children aged 10–17 years who wore masks for 6–7 hours during the school day, some children self-reported general (4–7%) or situation-specific (2–4%) side-effects such as skin irritation, headache, or difficulty breathing during physical education.82

The potential impact of masks on language and emotional development has been examined in several studies.83-89 Some research suggests children and adults, and especially toddlers (aged 3–5 years) can have difficulty inferring emotion from facial features presented on photographs of persons with their lower facial features covered by a mask.83 However, a study of 7- to 13-year-old children determined the decrement in emotional inference observed when the lower half of a photographed face was covered with a mask was equivalent to that associated with covering the eyes with sunglasses, leading the authors to conclude that in combination with other contextual cues, masks are unlikely to produce serious impairments of children’s social interactions.84 A study of 2-year-old children concluded that they were able to recognize familiar words presented without a mask and when hearing words through opaque masks.85 Among children with autism spectrum disorders (ASD), interventions including positive reinforcement and coaching caregivers to teach mask wearing have improved participants’ ability to wear a face mask.86-88 These findings suggest that even children who may have difficulty wearing a mask can do so effectively through targeted interventions.

Experimental and epidemiologic data support community masking to reduce the spread of SARS-CoV-2, including alpha and delta variants, among adults and children. The prevention benefit of masking is derived from the combination of source control and wearer protection. The relationship between source control and wearer protection is likely complementary and possibly synergistic, so that individual benefit increases with increasing community mask use. Mask use has been found to be safe and is not associated with clinically significant impacts on respiration or gas exchange under most circumstances, except for intense exercise. The limited available data indicate no clear evidence that masking impairs emotional or language development in children. Further research is needed to assess masks, particularly to identify the combinations of materials that maximize both their blocking and filtering effectiveness, as well as fit, comfort, durability, and consumer appeal.

As of December 6, 2021

On This PageAdultsChildrenType of investigationLocationStudy monthsPopulation studiedInterventionOutcomeAbaluck37Payne38Wang Y39Hendrix44Doung-Ngern41Gallaway49Rader57Wang X47Mitze48Van Dyke50Lyu and Wehby51Joo54Guy56Karaivanov53Chernozhukov55Leffler90As of December 6, 2021